Popular videos

Other watch


Скачать с ютуб CS224W: Machine Learning with Graphs | 2021 | Lecture 3.2-Random Walk Approaches for Node Embeddings

00:27:07 2,2 тыс. просмотров

Скачать видео: Скачать MP3: Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
twohistoryinformationway

Jure Leskovec
Computer Science, PhD

In this video we look at a more effective similarity function - the probability of node co-occurrence in random walks on the graph. We introduce the intuition behind random walks, the objective function we will be optimizing, and how we can efficiently perform the optimization. We introduce node2vec, that combines BFS and DFS to generalize the concept of random walks.

To follow along with the course schedule and syllabus, visit:
http://web.stanford.edu/class/cs224w/

To get the latest news on Stanford’s upcoming professional programs in Artificial Intelligence, visit:
http://learn.stanford.edu/AI.html

To view all online courses and programs offered by Stanford, visit: http://online.stanford.edu​

Comments